

INDIAN SCHOOL MUSCAT FINAL EXAMINATION 2022 APPLIED MATHEMATICS (241)

CLASS: XII

DATE: 26.11.2022

TIME ALLOTED

: 3 HRS.

MAXIMUM MARKS: 80

GENERAL INSTRUCTIONS:

- (a) This question paper consists of 38 questions divided into five sections A, B, C, D and E.
- (b) Section-A has 18 MCQs and 2 Assertion-Reason based questions of one mark each (Q1 to Q20).
- (c) Section-B has 5 questions of two marks each (Q 21 to Q 25).
- (d) Section-C has 6 questions of three marks each (Q 26 to Q 31).
- (e) Section-D has 4 questions of **five marks** each (Q 32 to Q 35).
- (f) Section-E comprises of 3 Case-study questions of four marks each (Q 36 to Q 38).
- (g) There is no overall choice. However, internal choice has been provided in some questions.

SECTION - A (Questions 1 to 20 carry 1 mark each)

MULTIPLE CHOICE QUESTIONS:

1.	In a 100 m race, A beats B by 10 m and C by 13 m. In a race of 180 m, B will beat C by						
	(A) 7m (B) 6m (C) 10m (D) 11m						
2.	Which of the following statements is incorrect?						
	(A) A function $f(x)$ attains local minimum value at $x = a$ if $f''(x) > 0$						
	(B) A function $f(x)$ attains local maximum value at $x = a$ if $f''(x) < 0$						
	(C) If a function is either increasing or decreasing in whole of its domain then no critical point exists						
	on its domain.						
	(D) $f(x)$ is increasing on (a, b) if $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$ for all $x_1, x_2 \in (a, b)$						
3.	At what rate converted semi-annually will the present value of a perpetuity of ₹450 payable at the						
	end of each 6 months be ₹20,000?						
	(A) 9% (B) 6 % (C) 4.5% (D) 5%						
4.	A person invested ₹2, 00,000 in a fund for 1 year. At the end of the year the investment was						
	worth ₹ 2, 16,000. The rate of interest for this investment is						
	(A) 8% (B) 10% (C) 6% (D) 5%						
5.	Mr. Ajeet takes a loan of ₹1,00,000 with 10% annual interest rate for 5 years. The EMI under flat						
	rate system is						
	(A) ₹1000 (B) ₹5000 (C) ₹2500 (D) ₹3000						

- What is the least value of 'x' that satisfies $x \equiv 7 \pmod{4}$, where $7 < x \le 13$?
- (B)9
- (C) 10
- (D) 11
- If $A = [a_{ij}]$ be a skew-symmetric matrix of order n, then 7.
 - (A) $a_{ij} = \frac{1}{a_{ji}}$ for all i, j
- (B) $a_{ij} \neq 0$ for all i, j
- (C) $a_{ij} = 0$, where i = j
- (D) $a_{ij} \neq 0$, where i = j
- The given curve represents a normal 8. distribution curve with mean μ and standard deviation σ . Probabilities p_1 , p_2 and p_3 are marked in the figure. The value of $(p_2 - p_1)$ is
 - (A) 13.5 %
- (B) 9% nearly
- (C) 27% nearly (D) 5% nearly

- 9. -6(mod7) is equal to
 - (A) 6
- (B)
- (C)
- 3 (D) 5
- 10. A machine costing ₹50,000 has a useful life of four years. The estimated scrap value is ₹10,000. Using straight line method, the annual depreciation will be
 - (A) ₹12500
- (B) ₹11000
- ₹10000 (C)
- (D) ₹15000

- The function $f(x) = (x 2)^4 4$ has
 - (A) minimum value of 2 and maximum of 4
- (B) minimum value of 4 and maximum of 2
- (C) minimum value of -4 and no maximum value (D) no minimum value and maximum of -4
- 12. If R(x) is the revenue function then the rate of change of marginal revenue is given by
 - (A) R'(x)
- (B) R(x) - C(x)
- (C) P'(x)
- (D) $R^{\prime\prime}(x)$
- Mr X took a loan of ₹2,000 for 6 months. Lender deducts ₹200 as interest while lending the money. In order to find the effective rate of interest we first need to find the value of i. Here the value of i is
 - (A) 0.10
- (B) 0.11
- (C)
- 0.12 (D) 0.15
- If $y = Ae^{5x} + Be^{-5x}$, then $\frac{d^2y}{dx^2}$ is equal to
 - (A) 5 y
- (B) -25 y
- (C) 15 y
- (D) 25 y

Trend component	Pattern of variation	Time period of variation						
I. Secular trend	a. is a regular periodic variability	i. over a period more than a year						
II. Cyclical trend	b. has smooth, regular variations	ii. within a period of one year						
III. Seasonal trend	c. has oscillatory variation	iii. over a long term period						
(A) $I-a-ii$; $II-b-iii$; $III-c-I$ (B) $I-b-iii$; $II-c-i$; $III-a-ii$								
(A) $I - a - ii$, $II - c - i$; $III - a - iii$ (B) $I - b - ii$; $II - a - iii$; $III - c - i$								
If $\begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix} = \begin{vmatrix} 6 & -2 \\ 7 & 3 \end{vmatrix}$, then the value of x is								
$(A) \pm 6$ $(B) 3$								
A fire in a factory dela	A fire in a factory delaying production for some weeks is							
(a) Cyclical Trend (b	(a) Cyclical Trend (b)Secular Trend (c) Irregular Trend (d) Seasonal Trend							
For a Poisson's Distribution, if $\lambda = 1$ then $P(2) =$								
$(A) \frac{e}{2} $ (B)	(A) $\frac{e}{2}$ (B) $\frac{1}{2e}$ (C) $\frac{2}{e}$ (D) 2e							
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.								
Assertion A : (4, 2)	Assertion A: $(4, 2)$ lies in the half plane represented by $4x + 6y - 28 < 0$							
Reason R: Because	Reason R: Because it lies on the line $4x + 6y = 28$							
In the light of the abo	ve statements, choose the most appropris	ate answer from the options given below						
(a) Both A and R are	correct and R is the correct explanation	of A.						
(b) Both A and Rare	(b) Both A and Rare correct but R is NOT the correct explanation of A.							
(c) A is correct but R	is not correct.							
(d) A is not correct by	at R is correct.							
O. Given below are two	statements: one is labelled as Assertion	A and the other is labelled as Reason R						
Assertion A: For storing and transporting <i>Covishield vaccine</i> a safe range of temperature is $to + 8^{\circ}$ Celsius temperature so It is safe to transport the vaccine in a temperature-controlled true which maintains temperature between 40° F to 45° F.								
Fahrenheit respective	(Conversion is given by $C = \frac{5}{9}(F - 32)$ where C and F are temperature in degree Celsius and degree Fahrenheit respectively) Reason R: For $2 \le C \le 8$ the range of F is $35.6 \le F \le 46.4$							
	ove statements, choose the most appropri							
(a) Both A and Rare	(a) Both A and Rare correct and R is the correct explanation of A.							
(b) Both A and Rare correct but R is NOT the correct explanation of A.								

- (c) A is correct but R is not correct.
- (d) A is not correct but R is correct.

SECTION - B (Questions 21 to 25 carry 2 marks each)

- 21. A man rows to a place 46 km distance and back in 11 hours 30 minutes. He found that he can row 5 km with the stream in the same time as he can row 4 km against the stream. Find the speed of the stream.
- 22. A person invested ₹15000 in a mutual fund and the value of investment at the time of redemption was ₹25000. If CAGR for this investment is 8.88%, calculate the time for which the amount was invested? [Given log(1.667) = 0.2219 & log(1.089) = 0.037]
- 23. What sum of money invested now could establish a scholarship of Rs 5000 which is to be awarded at the beginning of every year forever, if money is worth 8% per annum.

OR

Find the force of interest corresponding to effective rate of 10%, given that $\log_e 1.10 = 0.0953$

24. In a linear programming problem to minimize Z = 2x + y the student obtained the following graph and shaded the feasible region but forgets what is to be done next.

Help him to find the minimum value of Z

Find matrix A, if $A - B = \begin{bmatrix} 2 & 0 \\ 4 & -2 \end{bmatrix}$, $A + 2B = \begin{bmatrix} 0 & 2 \\ 0 & 4 \end{bmatrix}$.

If matrix $\begin{bmatrix} -2 & x-y & 5\\ 1 & b & 4\\ x+y & z & 7 \end{bmatrix}$ is symmetric. Find the values of x, y, z and b.

SECTION - C (Questions 26 to 31 carry 3 marks each)

- 26. Find the intervals in which the function $f(x) = 2x^3 24x + 107$ is
 - (i) strictly increasing
- (ii) strictly decreasing

27.	Find the remainder when 19 ¹²⁷ is divided by 4							
	OR							
	Insert appropriate sign of inequality:							
ŀ	$\sqrt{3}(\sqrt{50} + \sqrt{32})$ $2\sqrt{54} + 3\sqrt{24}$							
	Show your working.							
28. A and B are two square matrices of same order. If $AB = B^{-1}$ then show that $A^{-1} = B^2$								
	OR							
	Show that the matrix B ^T AB is symmetric or skew symmetric accordingly when A is symmetric or skew-							
	symmetric.							
29.	A couple wishes to purchase a house for ₹15, 00,000 with a down payment of ₹4,00,000. If they can							
	amortize the balance at an interest rate 9% per annum compounded monthly for 10 years, find the							
	monthly instalment (EMI). Also find the total interest paid. [Given $1.0075^{-120} = 0.4079$]							
30.	30. Find the absolute maximum and minimum values of the function <i>f</i> given by							
	$f(x) = \frac{1}{3}x^3 - 3x^2 + 5x + 8 \text{ in } [0, 4].$							
2.1								
31. A machine costing ₹50,000 is to be replaced at the end of 10 years, when it will have a sa value of ₹5000. To provide money at that time for a machine costing the same amount, a								
	sinking fund is set up. If equal payments are placed in the fund at the end of each quarter and the							
	fund earns 8% compounded quarterly, then what should each payment be? [Given $1.02^{40} = 2.208$]							
	SECTION – D (Questions 32 to 35 carry 5 marks each)							
32.	Rahul, Priya and Raj went for shopping vegetables. Rahul brought 500gm tomato, 2kg potatoes							
	and 1 kg apples. Priya brought 1kg tomato, 1 kg potatoes and 2 kg apples. Raj brought 1 kg							
	tomatoes, 2 kg potatoes only. Rahul, Priya and Raj paid Rs.200, Rs.310 and Rs.140 respectively. (i) Represent the given information into a system of linear equations.							
	(ii) Express the equations in the matrix form $AX = B$.							
	(iii)Use matrices to find the cost of 1kg tomatoes, 1 kg potatoes and 1 kg apples.							
	OR							
	If $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$ are two square matrices,							
	$\begin{bmatrix} 10 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & -1 & 5 \end{bmatrix}$							
	(ii) Hence solve the system of following linear equations:							
	x - y = 3, $2x + 3y + 4z = 17$ and $y + 2z = 7$							

33.

A random variable X has the following probability function

X	0	1.	2	3	4	5	6	7
P(X)	0	a	2a	2a	3a	a^2	$2a^2$	$7a^2 + a$

- (i) Find a
- (ii) Find P(X > 6)
- (iii) Find mean of the distribution

OR

In a manufacturing unit inspection, from a lot of 20 baskets which include 6 defectives baskets, a sample of 2 baskets is drawn at random with replacement.

- (i) Prepare the binomial distribution of the number of defective baskets.
- (ii) Also find E(X) and Var(X) for the random variable X

34.

Solve the LPP graphically: Maximize Z = x + 2y

subject to the constraints $x + 2y \ge 100$; $2x - y \le 0$; $2x + y \le 200$; $x, y \ge 0$.

35.

Alongside is a land and sea profile where the x-axis is sea level and y-values give the height of the land or sea bed above (or below) sea level and

$$y = \frac{1}{10}x(x-2)(x-3)$$
 km.

- a) Find where the lake is located relative to the shore line of the sea.
- **b)** Find $\frac{dy}{dx}$
- c) Find the maximum height of the hill and maximum depth of the lake w.r.t. x axis

OR

A given product can be manufactured at a total cost C (x) = Rs ($\frac{x^2}{100} + 100x + 40$), where x is the number of units produced. The price at which each unit can be sold is given by: $p = Rs (200 - \frac{x}{400})$. Determine the production level x at which the profit is maximum. What is the price per unit and the total profit at this level of production?

SECTION - E- CASE STUDY (Questions 36 to 38 carry 4 marks each)

- 36. An investigator polls common cold sufferers, asking them to estimate the number of hours of physical discomfort caused by their most recent colds. Assume that their estimates approximate a normal curve with a mean of 83 hours and a standard deviation of 20 hours.
 - (a) What proportion suffered for fewer than 61 hours?
 - (b) What proportion of sufferers estimate that their colds lasted longer than 48 hours?
 - (c) What is the estimated number of hours for the least suffering 5 percent?

OR

(c) What is the estimated number of hours for the most suffering 5 percent?

- 37. Three taps A, B and C can fill a tank in 6 hours. After working at it together for 2 hours, C is closed, A and B can fill the remaining part in 7 hours.
 - (i) What fraction of the tank is still empty after 2 hours?
 - (ii) What fraction of the tank is filled by tap A and B together in one hour after tap C is closed?
 - (iii) How many hours will be taken by tap C alone to fill the tank?
- 38. Mr. Vikas runs a bread factory and the record of his sales of bakery items for the period of 2015 2019 is as follows:

Year	2015	2016	2017	2018	2019
Sales	35	42	46	41	48
(in ₹ thousands)					

Based on the above information, answer the following questions. Show steps to support your answers.

(i) By taking year 2017 as origin, use method of least-squares to find the best-fit trend line equation for Mr. Vikas's business. Show the steps of your working.

OR

Demonstrate the technique to fit the best-suited straight-line trend by the method of 3-years moving averages. Also draw the trend line.

- (ii) What are the estimated sales for Mr. Vikas's business for year 2022?
- (iii) Mr. Vikas wishes to grow his business to yearly sale of ₹ 67400. In which year will he be able to reach his target?

****END OF THE QUESTION PAPER****

